Tetrahedron Letters No.41, pp. 4989-4992, 1966. Pergamon Press Ltd. Printed in Great Britain.

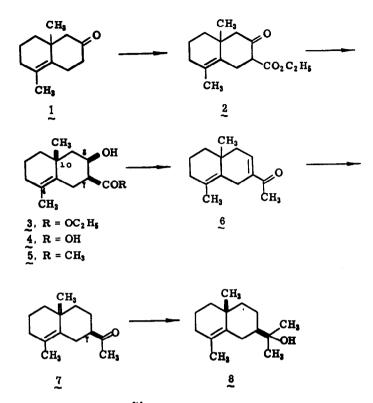
THE STEREOSELECTIVE TOTAL SYNTHESIS OF

RACEMIC Y-EUDESMOL

James A. Marshall and Myron T. Pike*

Department of Chemistry Northwestern University Evanston, Illinois 60201

(Received 18 July 1966)


Certain projects currently underway in our laboratory called for a supply of pure Y-eudesmol.¹ A recent report by Pinder and Williams² suggests that this material as found in nature cannot be easily purified. These workers synthesized a pure sample of the naturally occurring (+)-form of Y-eudesmol starting from (+)- α cyperone.³ In view of the scarcitv of this latter substance, we decided to investigate potential routes to the racemic form of Y-eudesmol (§).[†] From these investigations an efficient total synthesis of racemic Y-eudesmol (9) has evolved whose essential features are outlined below.

The known ketone 1⁴ was converted by treatment with sodium hydride in diethyl carbonate to the corresponding β -keto ester 2 [bp 118⁰ (bath temp.) at 0.05 mm]. Selective reduction (KBH₄)

4989

^{*}Public Health Service Fellow of the National Institute of General Medical Sciences, 1964--present.

[†] All formulas represent racemic substances even though only one enantiomer is depicted.

afforded hydroxy ester $3 [\lambda_{max}^{film} 2.85 (OH), 5.78 (CO), 8.35, 910, 9.60, and 10.50 µ] which, in turn, yielded hydroxy acid <math>4 [mp 140-142^{\circ}, \lambda_{max}^{KBr} 2.90 (OH), 3.0-4.0 (COOH), 5.85 (CO), 8.20, 8.50, 8.70, 10.50, and 11.25 µ; <math>\delta_{TMS}^{CDCl_3}$ 7.05 (OH; 2H), 4.43 (H-8, $W^{1/2} = 7Hz$), 1.67 (C-4 CH₃), and 1.26 ppm (C-10 CH₃); 60% yield based on ketone 1] when saponified with ethanolic potassium hydroxide. The nmr spectrum of this acid supports the assigned C-8 stereochemistry;⁴ the orientation depicted for C-7 follows from stability considerations.

The crude hydroxy ketone $\sum_{n=1}^{n} [\lambda_{max}^{film} 2.94 \text{ (OH)}, 5.83 \text{ (CO)}, 8.48.$ and 9.51 µ which resulted from addition of ethereal methyllithium to hydroxy acid 4, smoothly dehydrated in refluxing aqueous ethanolic potassium hydroxide giving unsaturated ketone 6 [bp 950 (bath temp.) at 0.05 mm; λ_{max}^{film} 6.00 (CO), 8.00, 9.32, 10.47, 11.20, and 12.48 μ ; $_{\rm 5} \frac{\rm CCl_4}{\rm TMS}$ 6.78 (H-8), 2.20 (CH₃CO), 1.62 (C-4 CH₃), and 0.96 ppm (C-10 CH₃); $\lambda \frac{\text{EtOH}}{\text{max}}$ 232 m_µ (ϵ 10,000)]. Catalytic hydrogenation over 5% palladium-on-carbon in ethanolic potassium hydroxide⁵ afforded the dihydro derivative 7 [bp 110° (bath temp.) at 0.05 mm; $s_{TMS}^{CC1_4}$ 2.06 (CH₃CO), 1.61 (C-4 CH₃), and 1.04 ppm (C-10 CH₃)]. The gas chromatogram⁶ of this material revealed about 8% of a second component, presumably the C-7 epimer, which could be completely removed by preparative gas chromatography. Equilibration in refluxing methanolic sodium carbonate afforded a 10:1 mixture of epimeric ketones, predominantly 7. Racemic γ -eudesmol (8) [bp 100⁰ (bath temp.) at 0.04 mm; $\hat{\lambda_{\max}}^{film}$ 2.95 (OH), 8.30, 8.66, 8.78, 10.72, 10.93, 11.80, 12.20, and 12.98 μ ; ${}_{0}^{CC1}$ 1.58 (C-4 CH₃), 1.13 (isopropyl CH₃ 's), and 1. 01 ppm (C-10 CH₃)¹; 40% based on hydroxy acid 4] was secured via addition of ethereal methyllithium to ketone 7. The infrared spectrum and gas chromatographic retention time were identical with those of the natural (+)-isomer.

Acknowledgments --We thank the United States Public Health Service for supporting this work through a research grant (AI-04965). We are indebted to Dr. John W. Rowe of Forest Products Laboratories, Madison, Wisconsin for a generous sample of the eudesmol isomers and the infrared spectrum of $(+)-\gamma$ -eudesmol.

REFERENCES

- 1. R. B. Bates and E. K. Hendrickson, <u>Chem.</u> and Ind., 1759 (1962) and references therein.
- 2. A. R. Pinder and R. A. Williams, J. Chem. Soc., 2773 (1963).
- 3. R. Howe and F. J. McQuillin, ibid., 2423 (1955).
- 4. Cf. J. A. Marshall and N. Cohen, J. Am. Chem. Soc., 87, 2773 (1965); J. A. Marshall, N. Cohen, and A. R. Hochstetler, ibid., 88, 3408 (1966).
- 5. Cf. R. Howe and F. J. McQuillin, J. Chem. Soc., 1194 (1958).
- 6. A 10% DC-550 Silicone oil on 60-80 Chromosorb W column was used.